Data Fusion at Scale in Astronomy

Aug 29th 2017

Matthias A Lee

Lots of Data, Many Sources

- World is exploding with data
- Data collection grows with Moore's law
 - Over 100 PB of astronomy data in 10 years
 - Pioneer in big data
 - Sloan Digital Sky Survey in house 35 TB
 - Large Synoptic Survey Telescope expected 60 PB¹
 - Big data everywhere
 - Sciences: genomics, particle physics, astronomy
 - Industry: finance, social media, machine learning

Making sense of it All

- Biggest challenges, extracting meaning
- Difficult to process, transfer and store
- Need new methods
 - Deal with lots of data
 - Scalable
 - Combine data, extract meaning.
- Parallel to Scale
 - GPUs and Clusters
 - Amdahl's Law

Fusing Data at Scale

- Cross-Matching Astronomy Catalogs
- Optimal Image Coaddition
 - Sharpening Images, Doubling resolution
- Extracting Color from monochrome images

Fusing Astronomy Catalogs

Thesis Mork Divide, Conquer & Parallelize

- Pair of objects
 - Compute simple distance metric
- Challenge is in efficient Parallelism
 - Segments
 - Sorting/Thrust
 - Worker Jobs
 - Zones Algorithm¹
 - Multi-GPU

¹ "There Goes the Neighborhood: Relational Algebra for Spatial Data Search" Gray, Szalay, Fekete (2004)

Unprecedented Speed

- Optimization yields high matching performance
 - 50M × 150M in 50 seconds
 - 450M × 450M in 3 minutes vs 45mins !

"Faster catalog matching on Graphics Processing Units" M. Lee, T. Budavári (2017)

Catalog Crossmatch

- Scientifically Important Problem
- Scalable Acceleration
 - Parallelized across multi-GPU
- 15x faster vs State of the Art
 - 3 minutes vs 45 minutes

Observing the Sky

SDSS telescope at night by Patrick Galume

Multiple Exposures

Sloan Digital Sky Survey (SDSS)

- Stripe 82 has 70x coverage

Large Synoptic Survey Telescope (LSST)
 Will have 200x coverage

Traditional Solutions

- Lucky Imaging
 - Keep only the best/sharpest 1% of the images
- Coadding
 - Higher Signal-to-Noise Ratio
 - Worst acceptable blur (PSF)

Traditional Solutions

- Lucky Imaging
 - Keep only the best/sharpest 1% of the images

Next-Generation Processing

- Traditional methods are sub-optimal
 - Naive assumptions yield wrong results
- Computational Optics
 - Best possible signal-to-noise ratio
 - Sharper & deeper images
 - Higher resolution

Computational Optics

- Single frame solutions before
 - Correcting Hubble optics
 - Classic Richardson-Lucy deconvolution
 - White (1994), Starck+(1994), Fish+ (1995)
 - Limited by information in single frame
- Multiple frames provide new opportunities
 Breaks degeneracy of PSF and the "true" image

Linear Model for Exposures

- "true" image convolved with unknown PSF
- Plus some noise

• Solve for *x*

... and f

Streaming Deconvolution

- We solve for the underlying "true" image
- Gaussian likelihood function yields
 quadratic minimization

$$|y_t - Fx_t|^2$$

- Multiplicative updates
 - cf. Richardson-Lucy

$$x_{t+1} = x_t \odot \frac{F^T y_t}{F^T F x_t}$$

• Iterative approach:

Load next Observation Initialize new PSF

• Iterative approach:

• Iterative approach:

• Iterative approach:

The devil is in the details!

Textbook Deconvolution

Annis Coadd (2011)

unmodified deconv

Textbook Deconvolution

Annis Coadd (2011)

• Ringing artifacts

unmodified deconv

Textbook Deconvolution

Annis Coadd (2011)

unmodified deconv

- Ringing artifacts
- Speckled background

Robust Statistics

- Quadratic cost function dominated by bad pixels
 - Poor convergence across image
- Apply Robust $\rho(r)$
 - Quadratic for small residuals
 - Down-weights large
- Iterative re-weighting
 - Integrate with streaming

Careful Updates

- Artifacts from nowhere
 - Large updates of tiny values
- Limit the influence of updates
 - E.g., no more than 2x

Update Image

Model Image

Masking Pixels

• Ignore gaps as well as bad or saturated areas

• But we also solve for the missing areas!

MFBD + Robust + Update Clipping

Super Resolution

• Upscale and Downscale Operator

Super Resolution

- Upscale and Downscale Operator
- CFHTLS ~ 2x resolution of SDSS

Super Resolution

- Upscale and Downscale Operator
- CFHTLS ~ 2x resolution of SDSS

Performance

- Performance is important!
 - GPU-accelerated using pyCUDA
 - 140 images 2k by 2k: < 5 min
 - + Super Resolution, 4k by 4k: ~ 10 min
- Python, fast prototyping for experimentation
- Built Pipeline for processing Survey on MARCC

Beyond the Optimal Coadd

- Combine multiple images
 - Increase quality: SNR
 - Increase clarity: deblurring
 - Increase resolution: Super Resolution
- Color estimation

Differential Chromatic Refraction

Differential Chromatic Refraction

Differential Chromatic Refraction

DCR: Multiple PSFs

• Old model:

$$y_t = f_t * x + \epsilon_t$$

• Generalized model:

$$y_t = f'_t * x' + f''_t * x'' + \epsilon_t$$

subband 1

subband 2

Simulate Observations

- LSST StarFast Simulator
- 2 Discrete wavelengths
- PSF of varying Zenith angle

subband 1

Sample Observations

Thesis Wew Algorithm for Subbands

- Similar to MFBD
- Solving for multiple subband images

g k	band (Obse	rvatio	n	
		٠	•	٠	
			•	•	
				٠	

subband 2 Observation

.

.

.

subband 1 Recovered

subband 2 Observation

subband 2 Recovered

Noiseless – Flux Recovery

Introducing Noise

- 5 Observations
- 1 Realization

- 5 Observations
- 50 Realizations

- 15 Observations
- 50 Realizations

- 50 Observations
- 50 Realizations

Positional Accuracy

0.06 0.06 0.06 0.06 5 input images 15 input images 50 input images 200 input images 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 Bias b 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0 2 8 10 2 10 0 2 8 10 0 2 8 10 4 6 0 4 6 8 4 6 4 6 f_1 SNR $f_1 SNR$ f_1 SNR f_1 SNR

Position Bias of Coadd

Positional Accuracy

Position Bias of Coadd

Position Bias of DCR Result

Realistic Simulation, 2 Sub-Bands

Monochrome Observation

Realistic Simulation, 2 Sub-Bands

DCR Deconvolution

Realistic Simulation, 2 Sub-Bands

Realistic Simulation, 3 Sub-Bands

Monochrome Observation

DCR Deconvolution

Realistic Simulation, 3 Sub-Bands

Simulated Ground Truth

DCR Deconvolution

My Contributions

- Through:
 - Developing and implementing new algorithms
 - Advanced software and hardware
- Results:
 - Achieve high performance
 - Efficiently tackle big-data problems
 - Data fusion at scale!

Acknowledgments

Tamás Budavári

Alex Szalay

Randal Burns

Thank You

Any Questions?

Zenith Angles

